
e04 – Minimizing or Maximizing a Function e04abc

nag opt one var no deriv (e04abc)

1. Purpose

nag opt one var no deriv (e04abc) searches for a minimum, in a given finite interval, of a continuous
function of a single variable, using function values only. The method (based on quadratic
interpolation) is intended for functions which have a continuous first derivative (although it will
usually work if the derivative has occasional discontinuities).

2. Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_one_var_no_deriv(void (*funct)(double xc, double *fc,
Nag_Comm *comm),

double e1, double e2, double *a, double *b,
Integer max_fun, double *x, double *f,
Nag_Comm *comm, NagError *fail)

3. Description

nag opt one var no deriv is applicable to problems of the form:

Minimize F (x) subject to a ≤ x ≤ b.

It normally computes a sequence of x values which tend in the limit to a minimum of F (x) subject
to the given bounds. It also progressively reduces the interval [a, b] in which the minimum is known
to lie. It uses the safeguarded quadratic-interpolation method described in Gill and Murray (1973).

The user must supply a function funct to evaluate F (x). The parameters e1 and e2 together specify
the accuracy

Tol(x) = e1× |x|+ e2

to which the position of the minimum is required. Note that funct is never called at any point
which is closer than Tol(x) to a previous point.

If the original interval [a, b] contains more than one minimum, nag opt one var no deriv will
normally find one of the minima.

4. Parameters

funct
The function funct, supplied by the user, must calculate the value of F (x) at any point x in
[a, b].

The specification of funct is:

[NP3275/5/pdf] 3.e04abc.1

nag opt one var no deriv NAG C Library Manual

void funct(double xc, double *fc, Nag_Comm *comm)

xc
Input: x, the point at which the value of F (x) is required.

fc
Output: the value of the function F at the current point x.

comm
Pointer to structure of type Nag Comm; the following members are relevant to
funct.

first – Boolean
Input: will be set to TRUE on the first call to funct and FALSE for all
subsequent calls.

nf – Integer
Input: the number of calls made to funct so far.

user – double ∗
iuser – Integer ∗
p – Pointer

The type Pointer will be void * with a C compiler that defines void *
and char * otherwise.
Before calling nag opt one var no deriv these pointers may be allocated
memory by the user and initialized with various quantities for use by funct
when called from nag opt one var no deriv.

bf Note: funct should be tested separately before being used in conjunction with
nag opt one var no deriv.

e1
Input: the relative accuracy to which the position of a minimum is required. (Note that since
e1 is a relative tolerance, the scaling of x is automatically taken into account.)

It is recommended that e1 should be no smaller than 2ε, and preferably not much less than√
ε, where ε is the machine precision.

If e1 is set to a value less than ε, its value is ignored and the default value of
√

ε is used
instead. In particular, the user may set e1 = 0.0 to ensure that the default value is used.

e2
Input: the absolute accuracy to which the position of a minimum is required. It is
recommended that e2 should be no smaller than 2ε.

If e2 is set to a value less than ε, its value is ignored and the default value of
√

ε is used
instead. In particular, the user may set e2 = 0.0 to ensure that the default value is used.

a
Input: the lower bound a of the interval containing a minimum.
Output: an improved lower bound on the position of the minimum.

b
Input: the upper bound b of the interval containing a minimum.
Output: an improved upper bound on the position of the minimum.
Constraint: b>a+e2. Note that the value e2 =

√
ε applies here if e2 < ε on entry to

nag opt one var no deriv.

max fun
Input: the maximum number of function evaluations (calls to funct) which the user is prepared
to allow.

The number of evaluations actually performed by nag opt one var no deriv may be
determined by supplying a non-NULL parameter comm (see below) and examining the
structure member nf on exit.
Constraint: max fun ≥ 3. (Few problems will require more than 30 function evaluations.)

3.e04abc.2 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04abc

x
Output: the estimated position of the minimum.

f
Output: the value of F at the final point x.

comm
Input/Output: structure containing pointers for communication to user-supplied functions;
see the above description of funct for details. The number of times the function funct was
called is returned in the member nf.

If the user does not need to make use of this communication feature, the null pointer
NAGCOMM NULL may be used in the call to nag opt one var no deriv; comm will then be
declared internally for use in calls to user-supplied functions.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE 2 REAL ARG GE
On entry, a+e2 = 〈value〉 while b = 〈value〉.
These parameters must satisfy a+e2<b.

NE INT ARG LT
On entry, max fun must not be less than 3: max fun = 〈value〉.

NW MAX FUN
The maximum number of function calls, 〈value〉, have been performed.

This may have happened simply because max fun was set too small for a particular problem,
or may be due to a mistake in the user-supplied function, funct. If no mistake can be found
in funct, restart nag opt one var no deriv (preferably with the values of a and b given on exit
from the previous call to nag opt one var no deriv).

6. Further Comments

Timing depends on the behaviour of F (x), the accuracy demanded, and the length of the interval
[a, b]. Unless F (x) can be evaluated very quickly, the run time will usually be dominated by the
time spent in funct.

If F (x) has more than one minimum in the original interval [a, b], nag opt one var no deriv will
determine an approximation x (and improved bounds a and b) for one of the minima.

If nag opt one var no deriv finds an x such that F (x − δ1) > F (x) < F (x + δ2) for some
δ1, δ2 ≥ Tol(x), the interval [x − δ1, x + δ2] will be regarded as containing a minimum, even
if F (x) is less than F (x − δ1) and F (x + δ2) only due to rounding errors in the user-supplied
function. Therefore funct should be programmed to calculate F (x) as accurately as possible, so
that nag opt one var no deriv will not be liable to find a spurious minimum.

6.1. Accuracy

If F (x) is δ-unimodal for some δ < Tol(x), where Tol(x) = e1 × |x| + e2, then, on exit, x
approximates the minimum of F (x) in the original interval [a, b] with an error less than 3×Tol(x).

6.2. References

Gill P E and Murray W (1973) Safeguarded steplength algorithms for optimization using descent
methods, NPL Report NAC 37, National Physical Laboratory.

7. See Also

nag opt one var deriv (e04bbc)

[NP3275/5/pdf] 3.e04abc.3

nag opt one var no deriv NAG C Library Manual

8. Example

A sketch of the function

F (x) =
sinx

x

shows that it has a minimum somewhere in the range [3.5, 5.0]. The example program below shows
how nag opt one var no deriv can be used to obtain a good approximation to the position of a
minimum.

8.1. Program Text

/* nag_opt_one_var_no_deriv(e04abc) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nage04.h>

#ifdef NAG_PROTO
static void funct(double xc, double *fc, Nag_Comm *comm);
#else
static void funct();
#endif

#ifdef NAG_PROTO
static void funct(double xc, double *fc, Nag_Comm *comm)
#else
static void funct(xc, fc, comm)

double xc, *fc;
Nag_Comm *comm;

#endif
{
*fc = sin(xc) / xc;

}
/* funct */

main()
{
double a, b;
double e1, e2;
double x, f;
Integer max_fun;
Nag_Comm comm;
static NagError fail;

Vprintf("e04abc Example Program Results.\n\n");

/* e1 and e2 are set to zero so that e04abc will reset them to
* their default values
*/

e1 = 0.0;
e2 = 0.0;
/* The minimum is known to lie in the range (3.5, 5.0) */
a = 3.5;
b = 5.0;
/* Allow 30 calls of funct */
max_fun = 30;
fail.print = TRUE;
e04abc(funct, e1, e2, &a, &b, max_fun, &x, &f, &comm, &fail);

Vprintf("The minimum lies in the interval %7.5f to %7.5f.\n", a, b);
Vprintf("Its estimated position is %7.5f,\n", x);

3.e04abc.4 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04abc

Vprintf("where the function value is %9.4e.\n",f);
Vprintf("%1ld function evaluations were required.\n", comm.nf);

exit(EXIT_SUCCESS);
}

8.2. Program Data

None.

8.3. Program Results

e04abc Example Program Results.

The minimum lies in the interval 4.49341 to 4.49341.
Its estimated position is 4.49341,
where the function value is -2.1723e-01.
10 function evaluations were required.

[NP3275/5/pdf] 3.e04abc.5

